Sesquiterpenoids and Lignans from Ligularia virgaurea spp. oligocephala

by Ya Li^a) and Yan-Ping Shi*a)^b)

 ^a) State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
 ^b) Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

(phone: +86-931-4968208; fax: +86-931-8277088; e-mail: shiyp@lzb.ac.cn)

From the BuOH extract of the whole plant of *Ligularia virgaurea* spp. *oligocephala*, a series of sesquiterpenes, sesquiterpene glycosides, and lignan glycosides were isolated, including the three new compounds (1*a*)-1-hydroxy-8-oxo-eremophila-6,9-dien-12-oic acid (**1**), 8-[(β -D-glucopyranosyl)oxy]eremophila-1(10),8,11-trien-2-one (**2**), and 4-[(β -D-glucopyranosyl)oxy]pinoresinol (**4**). Their structures were elucidated by 1D- and 2D-NMR as well as HR-ESI-MS analyses, and by comparison of the spectroscopic data with those reported for structurally related compounds.

Introduction. – More than 27 *Ligularia* species have long been used as folk remedies due to their antibiotic, antiphlogistic, and antitumor activities [1], sesquiterpenoids being the most-widespread secondary metabolites in this genus [2][3]. Recently, we have isolated some structurally novel sesquiterpenes from the AcOEt extract of *L. virgaurea* spp. *oligocephala* [4–6], which are used in traditional Chinese medicine (TCM) for the treatment of stomachache and nausea [7].

In continuation of our in-depth studies on chemical constituents of *L. virgaurea* spp. *oligocephala*, we now report the isolation and characterization of six compounds from the BuOH extract of this plant, including a new sesquiterpene (1), one new and one known sesquiterpene glycoside, 2 and 3 [8], respectively, a new lignan glycoside (4), and the two known lignan glycosides 5 [9] and 6 [10].

Results and Discussion. – Compound **1** was obtained as an amorphous, optically active powder, with $[\alpha]_D^{29} = -28.0$ (c = 0.5, MeOH). The molecular formula of **1** was deduced as $C_{15}H_{20}O_4$ based on HR-ESI-MS (m/z 265.1431 ($[M+H]^+$; calc. 265.1440). The IR spectrum displayed absorption bands for OH (3404), COOH (1709), and α,β -unsaturated C=O (1662 and 1624 cm⁻¹) molecular.

The ¹H- and ¹³C-NMR (DEPT) spectra indicated five quaternary C-atoms, five CH, two CH₂, and three Me groups (*Table 1*). In the ¹H-NMR spectrum, there were typical signals for three Me groups at δ (H) 1.27 (d, J = 6.4 Hz), 1.14 (s), and 1.07 (d, J = 6.4 Hz), as well as signals for C=C–H moieties at δ (H) 6.89 (br. s, 1 H) and 6.42 (d, J = 1.6 Hz, 1 H). In the ¹³C-NMR spectrum, there were resonances for a keto function at δ (C) 184.6, a COOH function at 177.6, and an oxygenated C-atom at 67.8. Comparing the data and features of the ¹H- and ¹³C-NMR spectra of **1** with those of known compounds [3][11][12], a structure based on an 8-oxo-eremophila-6,9-diene was inferred. The

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

HMBC cross-peaks between H–C(11)¹) at δ (H) 3.65–3.67 and C(12) at δ (C) 177.6, and between H–C(1) at δ (H) 4.41 and C(10) at δ (C) 170.7 indicated that the COOH and OH groups were attached at C(11) and C(1), respectively (*Fig. 1*).

Fig. 1. Selected HMBC (H \rightarrow C) correlations for $1,\,2$ and 4

The relative configuration of **1** was determined on the basis of a NOESY experiment: correlations between H–C(1) and Me(14), and between Me(14) and Me(15) indicated that the OH group was α -oriented, and that the two Me groups were in β -position. Thus, from the above data, the structure of compound **1** was deduced as (1 α)-1-hydroxy-8-oxo-eremophila-6,9-dien-12-oic acid.

Compound **2** was obtained as an amorphous, optically active powder, with $[\alpha]_D^{29} = -119.0$ (c = 0.8, MeOH). HR-ESI-MS showed the $[M+H]^+$ signal at m/z 395.2059 (calc. 395.2070), which, together with the NMR data, led to the molecular for-

¹) Arbitrary atom numbering. For systematic compound names, see the *Exper. Part*.

Position	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1	4.41 (<i>ddd</i> , <i>J</i> =12.0, 5.6, 1.6)	67.8	5.60(s)	121.3
2	2.18 (<i>m</i>)	36.6	_	197.9
3	1.60(m)	27.9	2.20 (<i>m</i>)	41.7
4	1.63 (<i>m</i>)	41.2	1.92 (<i>m</i>)	40.0
5	_	43.6	_	37.1
6	6.89 (br. s)	151.6	2.20 (<i>m</i>)	36.0
7	_	137.3	3.02(d, J=7.6)	44.0
8	_	184.6	_	163.2
9	6.42 (d, J = 1.6)	119.3	5.93(s)	105.1
10	_	170.7	_	166.1
11	3.65 - 3.67 (m)	37.7	_	144.4
12	_	177.6	4.91 (s), 4.85 (s)	113.3
13	1.27 (d, J = 6.4)	15.5	1.87 (s)	22.0
14	1.14 (s)	16.6	1.06(s)	17.2
15	1.07 (d, J = 6.4)	14.8	0.96 (d, J = 6.8)	14.5
1′	_		4.99(d, J=7.6)	99.8
2′	-		3.66 (m)	73.4
3′	-		3.70(m)	77.2
4′	-		3.66 (m)	70.2
5'	-		3.70 (m)	77.0
6′	-		3.88 (m)	61.5

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1** and **2**. At 400/100 MHz, resp., in CD₃OD; δ in ppm, *J* in Hz; trivial atom numbering¹).

mula $C_{21}H_{30}O_7$. The IR spectrum showed typical absorption bands for OH groups (3388 cm⁻¹).

In the NMR spectra of **2** (*Table 1*), the signals at $\delta(H)$ 4.99 (d, J=7.6 Hz) and $\delta(C)$ 99.8 (d), 77.2 (d), 77.0 (d), 73.4 (d), 70.2 (d), and 61.5 (t) indicated a β -glucopyranosyl (Glc) moiety. The ¹H-NMR spectrum showed two C=C-H moieties at $\delta(H)$ 5.93 (s, 1 H) and 5.60 (s, 1 H), two exocyclic methylidene resonances at $\delta(H)$ 4.91 (s, 1 H) and 4.85 (s, 1 H), and three Me groups resonating at $\delta(H)$ 1.87 (s), 1.06 (s), and 0.96 (d, J=6.8 Hz), respectively. The ¹³C-NMR spectrum of **2** showed a typical signal at $\delta(C)$ 197.9 due to an α,β -unsaturated keto function. Careful comparison of the ¹H- and ¹³C-NMR spectroscopic data of **2** with those of **1** and related sesquiterpenes [12][13] led to the conclusion that **2** also had an eremophilane skeleton.

The proposed structure of **2** was further confirmed by 2D-NMR analysis. The HMBC correlations between H–C(1) and C(2) and C(10), between H–C(9) and C(10) and C(8), between H–C(7) and C(6), C(8), and C(11), and between H–C(12) and C(11) suggested a 2-oxo-eremophila-1(10),8,11-triene derivative. Furthermore, HMBC correlations between H–C(8) and C(1'), the anomeric C-atom of the Glc residue, as well as between H–C(1') and C(8) indicated that the Glc unit was located at C(8) (*Fig. 1*). Thus, from the above data, the structure of **2** was elucidated as 8-[(β -D-glucopyranosyl)oxy]eremophila-1(10),8,11-trien-2-one.

Compound 4 was obtained as an amorphous, optically active powder, with $[\alpha]_D^{29} = -14.0$ (c = 0.7, MeOH). HR-ESI-MS Experiments showed the $[M + NH_4]^+$ sig-

nal at m/z 554.2238 (calc. 554.2238), in accord with the molecular formula C₂₆H₃₂O₁₂. The IR spectrum of **4** showed a broad absorption at 3361 cm⁻¹ (OH), and strong absorptions at 1603, 1517, and 1457 cm⁻¹ (Ar).

Inspection of the ¹³C-NMR (DEPT) spectrum of **4** showed two MeO functions and a Glc residue, together with the resonances for 18 main-skeleton C-atoms (*Table 2*). The ¹H-NMR spectrum (*Table 2*) indicated two trisubstituted aromatic rings [δ (H) 7.18 (*d*, *J*=2.0, 1 H); 6.99 (*d*, *J*=2.0, 1 H); 6.96 (*dd*, *J*=8.0, 2.0, 1 H); 6.85 (*dd*, *J*=8.0, 2.0, 1 H); 6.79 (*d*, *J*=8.0, 1 H); and 6.75 (*d*, *J*=8.0 Hz, 1 H)] and two MeO groups at δ (H) 3.85 (*s*) and 3.82 (*s*). A complex *multiplet* assignable to a CH at δ (H) 3.30 (H–C(1)) was found to be coupled with a benzylic resonance at δ (H) 4.97 (*d*, *J*=7.6 Hz, H–C(2)), and with a pair of CH₂ H-atoms at δ (H) 4.17 (*dd*, *J*=9.2, 5.6, H_a–C(8)) and 3.94 (*dd*, *J*=9.2, 2.0 Hz, H_b–C(8)). A second benzylic H-atom at δ (H) 4.84 (*d*, *J*=7.6 Hz, H–C(6)) was found to be coupled with another CH at δ (H) 2.97 (*m*, H–C(5)) through ¹H,¹H-COSY and HMQC experiments. These signals indicated the presence of a 2,6-diaryl 3,7-dioxabicyclo[3.3.0]octane skeleton similar to syringaresinol [14].

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of **4**. At 400/100 MHz, resp., in CD₃OD; δ in ppm, J in Hz; trivial atom numbering¹).

Position	$\delta(\mathrm{H})$	$\delta(C)$	Position	$\delta(\mathrm{H})$	$\delta(C)$
1′	_	133.2	1	3.30 (<i>m</i>)	52.7
1″	_	133.0	2	4.97 (d, J = 7.6)	88.7
2'	7.18 (d, J = 2.0)	109.9	4	5.69 (br. s)	102.2
2''	6.99(d, J=2.0)	109.2	5	2.97 (m)	61.4
3′	_	147.3	6	4.84(d, J=7.6)	82.4
3″	_	147.2	8	4.17 (dd, J = 9.2, 5.6)	70.7
				3.94 (dd, J = 9.2, 2.0)	
4′	_	145.8	Glc-1	4.94(d, J=7.2)	97.9
4''	_	145.6	Glc-2	$3.30 - 3.40^{a}$)	73.3
5'	6.79 (d, J = 8.0)	114.0	Glc-3	$3.30 - 3.40^{a}$	76.4
5″	6.75(d, J = 8.0)	114.4	Glc-4	$3.30 - 3.40^{a}$	70.0
6′	6.96 (dd, J = 8.0, 2.0)	118.4	Glc-5	$3.30 - 3.40^{a}$	76.3
6''	6.85 (dd, J = 8.0, 2.0)	119.4	Glc-6	3.78(m), 3.60(m)	61.3
MeO	3.85(s)	55.3	MeO	3.82(s)	55.0

By analysis of the HMBC data of **4** (*Fig. 1*), the two MeO groups could be located at C(3') and C(3"), respectively. The Glc unit was attached at C(4) according to HMBC correlations between the anomeric H-atom of Glc with C(4), and, in turn, between H–C(4) and the anomeric C-atom of Glc. The relative configuration of **4** was determined on the basis of a NOESY experiment, which showed correlations between H–C(6) and both H–C(2) and H–C(4), and based on a correlation between H–C(2) and H–C(8) (*Fig. 2*). From these data, compound **4** was identified as 4-[(β -D-glucopyranosyl)oxy]pinoresinol.

Fig. 2. Key NOESY correlations for 4

Experimental Part

General. TLC: silica gel GF_{254} (10–40 µm; Qingdao Marine Chemical Factory). Column chromatography (CC): silica gel (200–300 mesh; Qingdao Marine Chemical Factory); C_{18} reversed-phase (RP) silica gel (35–75 µm; Analteck, Newwark); HPD-100 resin (Heibei, China). Optical rotations: Perkin Elmer 341 polarimeter. IR Spectra: Nicolet NEXUS-670 FT-IR spectrophotometer; in cm⁻¹. NMR spectra: Varian INOVA-400 spectrometer; in CD₃OD soln; δ in ppm rel. to Me₄Si, J in Hz. HR-ESI-MS: Bruker APEX-II mass spectrometer; in m/z.

Plant Material. The air-dried whole plant of *L. virgaurea* spp. *oligocephala* was collected in Huzhu County, Qinghai Province, P. R. China, in August 2002, and was identified by adjunct Prof. *Ji Ma*, Faculty of Pharmacy, First Military Medical University of PLA, Guangzhou, P. R. China. A voucher specimen (No. 2002001) has been deposited at the Key Laboratory for Natural Medicine of Gansu Province.

Extraction and Isolation. The air-dried powder of the whole plant of *L. virgaurea* spp. *oligocephala* (4.0 kg) was extracted at r.t. with 95% EtOH (3×7 d). The crude dry extract (340.0 g) was suspended in H₂O and extracted successively with petroleum ether, AcOEt, and BuOH. The BuOH-soluble part (45 g) was purified by CC (*HPD-100* resin) eluting with H₂O and 95% EtOH successively. The fraction eluted with 95% EtOH was concentrated *in vacuo* to afford a residue (20 g), which was subjected to CC (SiO₂; CHCl₃/MeOH 40 : 1, 20 : 1, 15 : 1, 10 : 1, 8 : 1, 5 : 1, and 0 : 1): seven fractions (*Fr. 1–7*). *Fr. 2* was subjected to CC (SiO₂; CHCl₃/MeOH 20 : 1) to afford **1** (5 mg). *Fr. 3* was subjected to CC (1. SiO₂, CHCl₃/MeOH 20 : 1; 2. RP- C_{18} , MeOH/H₂O 65 : 35) to provide **3** (4 mg) and **6** (9 mg). *Fr. 4* was subjected to CC (1. SiO₂, CHCl₃/MeOH 15 : 1; 2. RP- C_{18} , MeOH/H₂O 65 : 35) to furnish **2** (4 mg), **4** (8 mg), and **5** (6 mg).

 (1α) -1-Hydroxy-8-oxo-eremophila-6,9-dien-12-oic Acid (=2-[(5S*,8S*,8aS*)-3,5,6,7,8,8a-Hexahydro-5-hydroxy-8,8a-dimethyl-3-oxonaphthalen-2-yl]propanoic Acid; **1**). Amorphous powder. $[\alpha]_D^{29} = -28.0 \ (c = 0.5, MeOH)$. IR (KBr): 3404, 2934, 1709, 1662, 1624. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 265.1431 ([M + H]⁺, C₁₅H₂₁O₄⁺; calc. 265.1440).

8-[(β-D-Glucopyranosyl)oxy]eremophila-1(10),8,11-trien-2-one (=(4S*,4aR*,6S*)-7-[(β-D-Glucopyranosyl)oxy]-4,4a,5,6-tetrahydro-4,4a-dimethyl-6-(1-methylethenyl)naphthalen-2(3H)-one; **2**). Amorphous powder. [a]₂^p = -119.0 (c=0.8, MeOH). IR (KBr): 3388, 2965, 1707, 1604, 1074. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 395.2059 ([M+H]⁺, C₂₁H₃₁O₇⁺; calc. 395.2070).

4-[(β-D-Glucopyranosyl)oxy]pinoresinol (=4,4'-[(IS*,3R*,3aS*,4S*,6aR*)-3-[(β-D-Glucopyranosyl)oxy]tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis(2-methoxyphenol); **4**). Amorphous powder. $[\alpha]_D^{29} = -14.0$ (c=0.7, MeOH). IR (KBr): 3361, 1603, 1517, 1457, 1275, 1026. ¹H- and ¹³C-NMR: see Table 2. HR-ESI-MS: 554.2238 ([M+NH₄]⁺, C₂₆H₃₆NO₁₂⁺; calc. 554.2238).

This work was supported by the *Foundation for the 'Bairen Jihua'*, Chinese Academy of Sciences, by the *National Natural Science Foundation of China* (NNSFC 20021001, 20372029, 20475057), and by the *Natural Science Foundation of Gansu Province* (NSFGP; No. 3ZS051-A25-077).

REFERENCES

- [1] Jiangsu College of New Medicine, 'A Dictionary of the Traditional Chinese Medicines', People's Hygiene Publisher, Shanghai, 1977.
- 2] Y. Asada, T. Furuya, Chem. Pharm. Bull. 1984, 32, 475.
- [3] Y. Zhao, H.-R. Peng, Z.-J. Jia, J. Nat. Prod. 1994, 57, 1626.

- [4] Q.-X. Wu, Y.-P. Shi, L. Yang, Org. Lett. 2004, 6, 2313.
- [5] Q.-X. Wu, Y.-P. Shi, L. Yang, *Planta Med.* 2004, 70, 479.
 [6] Q.-X. Wu, A.-M. Yang, Y.-P. Shi, *Tetrahedron* 2005, 61, 10529.
- [7] Z.-Y. Wu, 'Flora Xizangica', Science Press, Beijing, 1985, Vol. 4, p. 836.
- [8] T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Karasawa, Chem. Pharm. Bull. 1987, 35, 1109.
- [9] M. Chiba, S. Hisada, S. Nishibe, H. Thieme, Phytochemistry 1980, 19, 335.
- [10] T. Deyama, T. Ikawa, S. Nishibe, Chem. Pharm. Bull. 1985, 33, 3651.
- [11] Y. Zhao, Z.-J. Jia, L. Yang, Planta Med. 1994, 60, 91.
- [12] S.-M. Zhang, G.-L. Zhao, R. Li, G.-Q. Lin, *Phytochemistry* **1998**, 48, 519.
- [13] A.-M. Adio, C. Paul, W. A. König, H. Muhle, Phytochemistry 2002, 61, 79.
- [14] H. B. Wang, R. Mayer, G. Rücker, M. Neugebauer, Phytochemistry 1993, 34, 1621.

Received January 9, 2006